
International Trends in Science and Technology

RS Global March 2021 37

COMPUTER SCIENCE

DEVELOPMENT OF TELEMEDICINE PROCESS SUPPORT

VISUAL TOOLKIT

Gagik Kirakossian, Prof. Dr., Head of Department "Computer Systems and Networks"
National Polytechnic University of Armenia, Yerevan, Armenia
Antranig Momjian, PhD student at National Polytechnic University of Armenia, and Senior Software
Engineer at Ogma Applications, Yerevan, Armenia

DOI: https://doi.org/10.31435/rsglobal_conf/30032021/7479

Abstract. The diagnosis and treatment processes of diseases, the effectiveness of different
programming approaches in the automation of the treatment process were studied.
A telemedicine process support visual toolkit has been suggested, which will allow the doctors to build
the treatment schemes using simple blocks, depending on the patient's input data.
The visual blocks that are planned to have in the IDE can be divided to the following groups:
dataFlow, arithmetic and logical operations blocks, Artificial intelligence blocks that will be
implemented on the basis of various machine learning models, Blocks intended for read data and
configure the devices of the IOT network, and custom blocks.
The toolkit will translate the represented treatment visual schemes to python code, which will call the
corresponding functions of represented treatment regimen’s blocks, which will be developed by us.
Keywords: IoT, Artificial Intelligence, specialized visualization toolkit, accuracy of the results, IDE.

Introduction. Chronic diseases have always been a burden for patients which require regular
measurements, recording measurement data, visiting doctor regularly, showing the doctor the recorded
measurement data, receiving updated treatment plan, and following instructions.

The main problem for this diseases are that they require to have visit the doctor and get care
plan updates frequently.

The goal of the research is to create an automated diagnosis and treatment system that is able to
monitor the patient in real time and modify/adjust the patient’s care plan automatically based on their health
state that can be detected by analyzing the data collected from the patient via IoT network, to ensure the best
treatment quality. The generated care plan will be available to the patient trough mobile application. [1]

The automated diagnosis and treatment system has the following basic requirements:

• The designed system should have the ability to be easily updated with the latest medical
innovations that can improve the quality of patients’ treatment.

• The system must have high accurate.
The Problem. A system should be developed which will solve the above-mentioned problems

as much as possible.
There are two approaches to software development: the traditional algorithm description

approach and the artificial intelligence approach.
In the first case, an accurate software can be developed, but in order to keep the system up to

date with the latest scientific innovations, constantly adding new software code will be necessary,
which requires programming knowledge that doctors do not have; it's not feasible for this project.

With the help of AI methods a system can be developed that learns medical innovations in real
time, but it is impossible to get 100% accuracy. In other words, its answers will be approximate,
because the artificial intelligence is based on statistics and probability theory.

Moreover, by these methods not the algorithm of the patient's treatment are taught to the
system, but clear cases of the disease with the appropriate care plans are taught to the system. Then,
during patient's treatment process, the method of artificial intelligence matches the patient's case to
one of the cases it has learned and gives the appropriate treatment plan for the case.

Solution. The best solution to this problem would be the creation of a specialized visualization
toolkit for the medical field that would allow doctors to describe treatment schemes through
comprehensible visual blocks and to update them in the future.

The structure of the visualization toolkit’s blocks should be designed to be convenient, clear
and comprehensible to doctors, with preserving the flexibility of language to express the most
complex medical algorithms at the same time.

International Trends in Science and Technology

38 March 2021 RS Global

The visual scripts should be compiled then to Web API application that must run on
application server to serve the web requests.

For simplicity and benefit from the existing libraries and frameworks, we will translate the
visual script to an existing programming language. Thus we won’t need to write compilers to compile
the scripts to assembly or to write interpreters from scratch. Nor we will need to write web
frameworks, database adapters or machine learning libraries.

The language to which the visual scripts will be translated should be easy to deploy new
versions during the application runtime, without the need of “blue green deployment” approach.
Because the system should be upgraded to newer version every time a doctor makes change to any
visual script, and the hard code reload feature will be a must for the language chosen.

As we know hot code reload only works for the scripting languages, thus the language chosen
will be scripting language.

From the wide range of the scripting languages, we should choose a one that has a reliable
security and good web framework, having good machine learning libraries would be a plus.

It’s clear that python would be the best for this case, with its various machine learning
libraries including: pandas, Tensorflow, NumPy, etc. And god web development frameworks
including Flask, Django, etc.

Each visual script block should have corresponding implementation in python. The toolkit will
translate the represented treatment visual schemes to python code, which will call the corresponding
functions of represented treatment regimen’s blocks, which will be developed by us.

Figure 1 presents an example of diabetes monitoring and care plan adjustment generalized
scheme. The real system schemes should be very detailed and complex.

Fig. 1. Diabetes Generalized scheme

International Trends in Science and Technology

RS Global March 2021 39

We can have two possible policies for visual schemes update permissions

1. Have a team of trusted doctors with that permission.

2. Allow different organizations to have their personal server instance, and each organization

will have the right to update only its own instance’s visual schemes.

The visual blocks that are planned to have in the IDE can be divided to the following groups:

1. DataFlow, that will include conditional commands, cycles and etc.

2. Arithmetic and logical operations blocks

3. Artificial intelligence blocks, that will be implemented on the basis of various machine

learning models

4. Blocks intended for read data and configure the devices of the IOT network

5. Custom blocks.

DataFlow blocks:

1. If

2. If-else

3. For

4. While

5. ForEach

Arithmetic and logic blocks:

1. Add

2. Subtract

3. Multiply

4. Divide

5. And

6. Or

7. Not

8. XOR

Artificial intelligence blocks:

1. Blocks that will perform predefined tasks using pre-selected and trained models.

2. Blocks that will represent various machine learning models, that would be able to be

trained through the visual toolkit, by passing the training set and parameters as input.

IOT blocks. Foreseen for receiving data from and configuring the devices that exist in the IoT

network.

This blocks are the ones that will interact with the IoT devices that exist in the system. We

will split them to two groups: devices’ configuration blocks and data fetching blocks.

Devices configuration blocks are responsible to send configuration to the devices that will

determine the frequency of the measurements that the device should perform, or the frequency of uploading

the collected data to the server. Data fetching blocks are responsible for reading the measured data.

We have two type of devices in our system that require different workflows to collect the data

from them. The first is the devices that upload their data to the device’s manufacturer’s server, for

example Dexcom [2] that uploads the user data to its own servers and provides APIs to configure the

frequency and the timing of the measurements [3]. In this case the devices’ configuration blocks will

configure the frequency and the timing of the measurements trough the API. And the data fetching

blocks will get the measurements data from the Dexcom server trough the API.

The second type of the devices are those who sync their measurements with health

applications: ‘Samsung Health’ for Android devices, and ‘Health’ for iOS, which fortunately have

corresponding SDKs.

Because we want to write our application with the Xamarin framework we will use Healthkit

for Xamarin.iOS [4] and MKM-HealthDataSDK [5, 6] for Xamarin.Android to get the health data

from health applications.

For this type of devices the devices’ configuration blocks will send to our application the frequency

and the timing when it should read the health data through the SDKs and upload them to our server. And the

data fetching blocks will fetch the data that is already uploaded to our server from the database.

Custom blocks. It will allow users to build new blocks, the functionality of which will be

possible to describe by one of the methods mentioned below:

International Trends in Science and Technology

40 March 2021 RS Global

1. Visual toolkit scheme

2. Python code

The programs represented through visualizations toolkit represent structured data, which we

will use for training our machine learning based visual toolkit intellisense. GPT-2 or TabNine models

could be used as a model.

The model will help doctors to write effective scripts by hinting the blocks that could be used,

cases to consider, etc.

Conclusions. The existing technologies were studied and appropriate programming languages,

technologies, strategies, and network systems were selected to develop the telemedicine process

support visual toolkit. The toolkit will include various types of already existing blocks and the ability

to create new blocks, through which appropriate treatment schemes can be built. Depending on the

patient's input data, treatment schemes can give different results. In other words, a toolkit with a

simple interface has been developed, in which a logical sequence of blocks can be which will work in

case of all possible input data. When running the schemes, each block will be converted to code: and

they work as a complete software code.

REFERENCES

1. Momjyan A.J., Andreasyan L.K., Kirakossian G.T. The architecture design of type 2 diabetes prevention

and treatment decision support smart system in the telecommunication network // Proceedings of

Engineering Academy of Armenia. -2018. –Vol. 15, № 2. – P. 291-294

2. Dexcom // Continuous Glucose Monitoring // https://www.dexcom.com/

3. Dexcom // Dexcom Developer Portal // https://developer.dexcom.com/

4. Microsoft // HealthKit in Xamarin.iOS // https://docs.microsoft.com/en-us/xamarin/ios/platform/healthkit

5. Kirakossian G. T., Mayilyan A. K., Momjian A. J. // MKM-HealthDataSDK //

https://www.nuget.org/packages/MKM-HealthDataSDK/

6. Kirakossian G. T., Mayilyan A. K., Momjian A. J. // MKM-Health Data software development kit for

mobile applications // Journal of Environmental Science, Computer Science and Engineering &

Technology. September 2019- November 2019. Vol. 8, № 4. P. 290-300.

